新闻中心
小白必备的SPSS 数据分析流程脉络(用spss简单的数据分析报告)
数据分析通用的定义为:用适当的统计分析方法对收集来的大量数据进行分析,提取有用的信息和形成结论,而对数据加以详细研究和概括总结的过程。这部分会通过数据的预处理、数据的描述统计、数据的推论统计,来为你描绘一条清晰的SPSS数据分析脉络。
此处只为大家理清脉络,详细操作步骤将在《菜鸟学SPSS数据分析》一书为大家一一讲解。1. 数据的预处理
由于计算机不能直接处理现实世界中的具体事物,因此必须先把具体事物转换成计算机能够处理的信息,即同学们需要对数据进行初步的加工、转换(即数据的预处理),以便适合采用相应的统计方法。
那么,在SPSS中涉及预处理的内容有哪些呢?
当你收集了大量的原始数据后,第一步需要将数据录入SPSS中,SPSS可以直接打开多种格式的数据,也可以通过数据库查询导入SPSS中。在海量的数据中,对数据进行核查。对各个变量进行数据转换,主要集中在【转换】菜单下。对各个变量进行数据管理,主要集中在【数据】菜单下。对整个数据文件进行管理,主要集中在【数据】菜单下。通过以上预处理,原始数据就被转换成合乎统计分析的数据,提高了数据挖掘的质量。
下一步,我们就根据统计分析的目的及变量的特征来选择正确的统计分析方法。
2. 数据的描述统计
当数据整理完毕后,我们需要通过描述统计及统计图表简单直观地了解变量特性。
在SPSS中也可以实现Excel的相关功能,可以制作表格并进行函数计算。利用统计图表可以更直观地看出数据的各种特征,比较数据间的差异。在进行数据分析时,首先要对数据有一个大致的了解,了解数据的集中趋势与离散趋势,基于此对数据做探索性分析。同学们通过以上方法了解数据的大致特征,用以辅助选取推论统计方法。
3. 数据的推论统计
推论统计通常是(但并非总是)数据收集和汇总后的下一步,推论统计常利用较小群体的数据来推论可能的较大群体的特征。比如,参数检验和非参数检验,在实际的应用中需要根据具体需求选取正确的统计方法来检验假设是否成立。
1.参数检验
参数检验是在已知或者假设总体分布的情况下对总体的相关参数进行评估检验,描述连续型因变量与分类自变量间的关系,如t检验、方差分析。
(1)t检验(对平均数的差异检验)

(2)方差分析(对平均数的变异分析)
通过分析不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小(方差分析的样本数均在2组以上)。


2.非参数检验
非参数检验是指对于无法获取总体分布情况的相关信息,利用样本数据对总体分布形态等进行推断。以下列举8种非参数检验的方法:
游程检验:检验样本的随机性和两个总体的分布是否相同。单样本K-S检验:检验样本是否来自特定的理论分布。二项分布检验:检验样本是否来自二项分布的总体。两个独立样本的非参数检验:检验两个样本是否来自相同分布的总体。多个独立样本的非参数检验:检验多个样本是否来自相同分布的总体。两个相关样本的非参数检验:检验样本来自的两个相关配对总体是否具有显著性差异。多个相关样本的非参数检验:检验多个相关样本是否来自相同分布的总体。卡方检验:判断样本是否来自特定分布的总体的检验方法,比较两个或两个以上的样本率(构成比例),以及对两个分类变量的关联性进行分析,其思想是比较理论频数和实际频数的吻合程度或者拟合度。3.相关分析
相关分析是研究现象之间是否存在某种依存关系,并对具体有依存关系的现象探讨其相关方向以及相关程度,研究随机变量之间的相关关系的一种统计方法。比如双变量相关分析和偏相关分析。
(1)双变量相关分析
皮尔逊相关分析:用于度量两个变量间的线性相关关系。肯德尔等级相关分析、斯皮尔曼等级相关分析:用于分析定类变量或者定序变量的相关关系。(2)偏相关分析
当两个变量同时与第三个变量相关时,将第三个变量的影响剔除,只分析这两个变量间的相关程度。
-------------
综上所述,数据分析是有组织有目的地收集数据、分析数据使之成为有用的信息,从而帮助大家做出判断、采取适当行动对具体业务进行指导的。
更多科技好书请见微信公众号:博文视点Broadview(微信号:bvbooks)